Chebyshev Wavelet Method for Numerical Solution of Fredholm Integral Equations of the First Kind

نویسندگان

  • Hojatollah Adibi
  • Pouria Assari
چکیده

A computational method for solving Fredholm integral equations of the first kind is presented. The method utilizes Chebyshev wavelets constructed on the unit interval as basis in Galerkin method and reduces solving the integral equation to solving a system of algebraic equations. The properties of Chebyshev wavelets are used to make the wavelet coefficient matrices sparse which eventually leads to the sparsity of the coefficients matrix of obtained system. Finally, numerical examples are presented to show the validity and efficiency of the technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error ‎analysis

In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....

متن کامل

NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION

In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...

متن کامل

Numerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like ‎operator‎

In this paper‎, ‎first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator‎. ‎Then‎, ‎we discuss and investigate the convergence and error analysis of the proposed method‎. ‎Finally‎, ‎to show the accuracy of the proposed method‎, ‎we present two numerical ‎examples.‎

متن کامل

A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

متن کامل

Numerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev ‎approximation

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010